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Outline. We present here the details of several computations that are described in the main manuscript. We also
describe in detail all the models that have been used in the manuscript, and expand on various notes in the discussion
in the manuscript.

First, we present the detailed analysis of the reduced model, and derive the primary expression of interest. Second,
we outline the modifications to the stochastic simulation algorithm required to incorporate delay (page 3). Third,
we provide a discussion of the positive feedback model, and present the parameters used for simulation (page 3), as
well as discuss the changes in the stability of the fixed points for the deterministic approximation (page 3). We also
discuss the case of distributed delays (page 4), and delayed deaths (page 4). Fourth, we present the details of the
lysis/lysogeny switch of phage λ (page 5). Finally, we present the details of the co-repressive toggle switch, along
with a discussion of a geometric method for varying the fixed points of the corresponding deterministic system in
terms of the system parameters (page 7). The qualitative stabilization effect is, however, independent of the system
parameters.

In all models time is scaled so that one unit of time corresponds to the half-life of a protein.

ANALYSIS OF THE REDUCED MODEL (RM)

We recall here the structure of the RM and derive the various estimates of interest. The states L and H in the RM
correspond to the those regions of the phase space that are in the vicinity of a stable point. While the process is in
the potential well, it undergoes small fluctuations around the fixed points of the corresponding deterministic system.

The third state, I, is an intermediary state. All transitions from the basin of one stable point must cross through the
intermediary state before they can fall into the second basin. In the phase space, the intermediary state is represented
by a thick neighborhood of the separatrix for the basins of attraction. As described in the main manuscript, since
the system retains memory, the immediate history is an important consideration around the separatrix. A fluctuation
may push the current state of the system from one basin to another, but mature molecules entering the population
can push the system back into the old potential well. This is markedly different from the Markovian case, where only
the current population composition is needed for determining future probabilities.

The idea behind the analysis of the RM is to first discretize time using a step size ∆ and to obtain the probability
of making failed transitions for a given delay τ . The probability density function for the random variable that counts
the number of failed transitions in the continuous limit is obtained by taking the limit ∆→ 0. This, in turn, allows us
to compute the mean number of failed transitions and the mean time spent in a failed transition, as well as the mean
time spent in a successful transition, assuming that the residence times dominate the delay. These are the primary
ingredients required for the computation of the residence times in the stable states.

We study the discrete case first. If the delay is assumed to be K∆ (where K is some positive integer), the RM can be
embedded in a (K+1)-dimensional space, and can be represented by vectors ~x = (x−K∆, x−(K−1)∆, . . . , x−∆, x0) with
the state x0 being the current state of the RM and x−t∆ being the state t steps in the past. In the higher-dimensional
space, not all jumps are feasible, and the process can only possibly jump from a configuration ~x to a configuration ~y
if x−i∆ = y−(i+1)∆ for all 0 ≤ i ≤ K − 1. The delay can now be expressed by saying that the probability of a feasible
jump from ~x to ~y is given by Λ

x−K∆
x0→y0 . Call fH the probability of failing a transition, given that the transition starts

in the state H, and x−i∆ = H for all 0 ≤ i ≤ K. Let P (k) denote the probability mass function for the number of
steps k that are required to complete the loop H → I → H given that H → I has occurred. We see that

P (k) =
1

fH

(ΛHI→I)
k−1(1− ΛHI→I)

ΛH
I→H

ΛH
I→H+ΛH

I→L

1 ≤ k ≤ K;

(ΛHI→I)
K(ΛII→I)

k−K−1(1− ΛII→I)
ΛI

I→H

ΛI
I→H+ΛI

I→L

k ≥ K + 1.
(S1)
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H I L

τ = 0 0.502 2.019× 10−5 0.498

τ = 0.04 0.498 1.977× 10−5 0.502

τ = 0.08 0.500 2.045× 10−5 0.499

TABLE I: Shown here are the stationary distributions for the RM for three different values of τ : τ = 0, τ = 0.04 and τ = 0.08.
Rates used in the RM are λII→x = 50, λxI→x = 99, λxI→xc = 1, λIx→I = 0.20, λxx→I = 0.0002, λxxc→I = 0.004;x ∈ {H,L};xc =
H if x = L and xc = L if x = H.

In the continuous-time limit, a discrete delay K∆ is replaced by a delay τ where ∆ → 0 and K∆ → τ . As in
the discrete case, for the continuous-time system let fH denote the probability of failing a transition, given that the
transition initiates from state H and the process remembers only state H when the transition begins. Let P (t) denote
the probability density function for the random variable FH : the time needed to complete the H → I → H loop given
that H → I has occurred.

For the continuous-time case, we compute a formal limit in Eq. (S1). To do so, we set up some notation. For
a continuous-time Markov process, a transition probability in a time interval of length ∆ is given by λ∆ were λ
is the corresponding transition rate for the process. In the discrete-time description of the process, we can replace
probabilities such as Λji→k (i 6= k) by λji→k∆ (rates corresponding to transitions) and probabilities ΛjI→I by (1 −
(λjI→H + λjI→L)∆) for j ∈ {H, I, L}. For fixed t and any ∆ such that t∆−1 is a positive integer, Eq. (S1) gives

P (FH ∈ [t−∆, t]) =
1

fH


(
1−

(
λHI→H + λHI→L

)
∆
)t∆−1−1

λHI→H∆ ∆ ≤ t ≤ τ(
1−

(
λHI→H + λHI→L

)
∆
)τ∆−1 (

1−
(
λII→H + λII→L

)
∆
)(t−τ)∆−1−1

λII→H∆ t ≥ τ + ∆.

(S2)
Taking ∆→ 0, we obtain

P (t) =
1

fH

{
λHI→H exp

(
−(λHI→H + λHI→L)t

)
0 < t ≤ τ

λII→H exp
(
−(λHI→H + λHI→L)τ − (λII→H + λII→L)(t− τ)

)
t > τ

. (S3)

Since P (t) is a pdf, it follows from integrating on [0,∞) that

fH = (1− ZH(τ))pHI→H + ZH(τ)pII→H

where

piI→H =
λiI→H

λiI→L + λiI→H
, ZH(τ) := exp(−(λHI→H + λHI→L)τ).

Analogous computations can be performed for the probability of failing a transition if it is assumed that the
transition initiates from state L, and the only remembered state is L. Analogous computations can also be performed
to obtain the probability density function for the time spent in making a successful transition loop H → I → L, and,
therefore, the probability of a successful transition. Further, we can compute the expectations of FH , and SH (defined
as the time spent in a successful transition):

E[FH ] =

∫ ∞
0

tP (t) dt

et cetera. The exact forms of these expressions can be computed analytically, but we do not write them here. Instead,
we note that dE[FH ]/dτ and dE[SH ]/dτ are very small. This implies that the times spent in state I during a failed
transition, or a successful one, do not significantly change with τ .

Denote by N the number of failed transitions before a successful transition. Then N has a geometric distribution
(P (N = n) = fnH(1− fH), n ≥ 0).

In between each failed transition, the process spends time in the stable states H or L before jumping out on another
excursion. We have assumed that the residence times sufficiently dominate the delay; a consequence of this assumption
is that once the process re-enters the state H, it stays there long enough to forget its past excursions. Therefore, we
can estimate the time between transition attempts by 1/λ where λ = λHH→I .

We can now estimate the expected residence time in the stable state:

E[RH ] ∼ fH
1− fH

(
E[FH ] +

1

λ

)
+ E[SH ] +

1

λ
.
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GILLESPIE’S STOCHASTIC SIMULATION ALGORITHM WITH DELAY

Gillespie’s stochastic simulation algorithm (SSA) is a way to sample exact stochastic realizations of a chemical
system. In the SSA, the reactions are modeled as birth-death processes. In the classical SSA at time t the state of the
system is described by the population vector x(t) = (x1(t), . . . , xN (t)). The set of possible reactions in the system is
indexed by {1, 2, . . . ,M} . For each reaction j, a propensity function aj : RN → R+ describes the rate at which the
reaction fires, given the population x(t). A vector vj ∈ ZN describes the change in each species when reaction j fires.
The total rate of all reactions together is given by

∑
j aj(x(t)). The SSA proceeds by first sampling a time, ∆, to the

next reaction from the exponential distribution with mean
∑
j aj . The reaction is assigned type i with probability

ai/
∑
j aj . The population x(t) is then updated by adding the appropriate state change vector x(t) 7→ x(t) + vi.

In the examples considered in the manuscript some reactions (in most of the manuscript these are births) only affect
the population size after a delay, while others (in most of the manuscript these are deaths) affect the population size
immediately. Delays need not be of constant length. In the case of non-constant delays we assume that they are i.i.d.
with distribution κ(τ).

To simulate such processes we used a modified version of Gillespie’s algorithm [1]: At time t in the simulation the
time to the next reaction, ∆, and the type of reaction, i, is sampled, as described above. Before proceeding ∆ units
of time, one checks to see if there are any reactions that commenced in the past, and finish in the interval [t, t+ ∆].
If there are no such reactions, one proceeds to time t + ∆. If the reaction sampled, i, is a non-delayed reaction, the
population is updated immediately. If i is a delayed reaction, the state change vector corresponding to i is put in a
queue, with a designated time of exit τ units of time in the future, sampled from some distribution κ(τ).

If on the other hand, there is a reaction from the past which terminates in the time [t, t+ ∆], one proceeds to the
time of this reaction. The population size is changed according to the state change vector of this past reaction. The
original waiting time ∆, and reaction type i, are discarded, and a new waiting time and reaction type are sampled.

POSITIVE FEEDBACK MODEL

The deterministic delay-differential equation that approximates the stochastic dynamics of the single gene positive
feedback model is given by

ẋ = α+ β
x(t− τ)b

cb + x(t− τ)b
− γx (S4)

The parameters used were β = 20, α = 5, c = 19, γ = ln(2) and b = 10. The parameter α is the basal rate of
production of the molecules of x (with units molecules s−1). The maximal rate of production for the system is α+β.
c is the number of molecules of x required to achieve the half-maximal activation rate of α+ β/2. The constant b is
the Hill coefficient for the activation function, and γ is the rate constant for the degradation of the protein x (with
units s−1).

For this set of parameters, there are three fixed points for the delayed differential equation: x = 7.2, x = 18.0 and
x = 36.0. The fixed points at 7.2 and 36.0 are stable, while the fixed point at x = 18.0 is unstable.

We map the phase space of the positive feedback model onto the RM using H = [23,∞), L = [0, 13] and I = (13, 23).
A trajectory that starts in the state H, and makes an excursion into I is said to have a successful transition if it
reaches state L before state H.

All trajectories are initialized in the state H at x = 25. The initial molecule production queue is assumed to be
empty. A transient is computed for (τ2 + 1)× 104 units of time. Any data is gathered after the transient. The mean
residence times Rτ are computed by averaging over 104 transitions.

Stability analysis for the Positive Feedback Model. We analyze the spectrum of the linearization around the fixed
point of the delay differential equation (S4) rewritten as

ẋ(t) = B(x(t− τ))−D(x). (S5)

This equation is the deterministic counterpart of the stochastic positive feedback model examined in the manuscript.
Linearizing Eq. (S5) in the neighborhoods of a stable fixed point x0 to yield a DDE

ẋ(t) = B′(x0)(x(t− τ)− x0) +D′(x0)(x(t)− x0).
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On setting y(t) = x(t)− x0, p = −B′(x0), q = D′(x0), and assuming a solution of the form

y(t) = Cest

we get a characteristic equation

(s+ q)esτ + p = 0.

The kthpair of eigenvalues sk can be obtained by solving the equation

sk =
1

τ
Wk(−pτeτq)− q

where Wk is the kth branch of the Lambert W function. If s0 is found to have negative real part, no other eigenvalues
need to be computed as the stability is determined completely by s0.

As is apparent from Fig S1, as τ increases, the stability of both stable fixed points decreases. Therefore, while the
stochastic positive feedback system becomes mores stable, its deterministic counterpart becomes less stable with an
increase in delay.

FIG. S1: Left: Plot of the leading eigenvalue, as a function of the delay, for the linearization of the system in the neighborhood
of the lower fixed point x0 = 7.21. Right: Plot of the leading eigenvalue, as a function of the delay, for the linearization of the
system in the neighborhood of the higher fixed point x0 = 36.01.

Distributed Delays. To examine the effect of distributed delay, we used Gamma delay distributions, κ(τ ;µ, σ),
with different means and variances. The effect of increasing the mean of the distribution κ was qualitatively similar
to increasing the magnitude of a constant delay, τ : The mean residence times increased sharply with small increases
in this mean, and eventually appeared to saturate.

Increasing the variance of the gamma distribution for a fixed mean appears to initially slow down the rate of
increase of the mean transition time with increasing delay; however, larger variances also appear to correspond to
larger saturation values (see Fig. S2).

Delayed Deaths. We also consider a process that is formally constructed by delaying deaths (see Fig. S3). In
such a model, as in the stochastic simulation algorithm with delayed births, the waiting time to the next reaction is
sampled. If that reaction is a birth type reaction, the population is updated immediately. For a degradation, we put
the corresponding state change vector in a queue with a designated time of exit. A new reaction time is then sampled.
Otherwise the algorithm is as described above.

Delaying reactions that decrease population is less realistic, and can lead to negative population sizes. We dis-
regard any reactions that would decrease the size of a population below 0. Formally, the deterministic equations
approximating the stochastic dynamics in the case of delayed deaths can be written as

ẋ = α+ β
x(t)b

cb + x(t)b
− γx(t− τ) (S6)
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FIG. S2: Left: Positive feedback model with distributed delay. A Gamma distribution with τ ∈ (0, 10) and σ ∈ {1, 2, 10}
is used for the positive feedback model. The parameters used are a = 20, b = 5, k = 19. The trajectories are initialized with
a population of size 25, followed by a long transient. For small values of τ , the ratio Rτ/R0 grows more slowly for larger
variances. Right: Delay distributions. We use families of Gamma distributions with varying means and variances σ2 = 1, 4.
Displayed here are the distributions for means 4 and 8.

FIG. S3: Effect of delaying degradation. (Left) The motif for the positive feedback model. (Center) The stationary
distributions for three different delays. Darker lines correspond to larger delays. The maximum accumulation of proteins of
type X increases with delay. Since the exiting state change vectors depend on the protein numbers at a time in the past,
there is an accumulation of probability at X = 0 with increasing delay. (Right) Solid dots represent the mean residence times.
Dashed lines represent the probability of succeeding in an attempted transition.

with the added constraint that x(t) ≥ 0 for all t ≥ 0.
Delaying deaths destabilizes the bistable switch. The explanation parallels that given in the main

manuscript:Consider a large downward fluctuations from away from the upper stable state H. In the presence of
transcriptional delay, birth rates are determined by the state x(t − τ), and the larger τ , the more likely it is that
x(t− τ) is in state H. But death rates in state H are high and favor motion away from H. Therefore, the trajectory
is pushed away from the stable state it came from. The result is a large decrease in residence times with increasing
delay.

The RM described in the manuscript can capture this effect by appropriately changing the transition rates λHI→H
etc.

THE LYSIS/LYSOGENY SWITCH OF PHAGE λ.

The lysis/lysogeny switch of phage-λ is realized as a set of chemical reactions involving multimerized forms of two
transcription factors A, and B, which regulate gene expression by binding to the genome at an operator site O. The
state of the operator is denoted by O if neither multimerized transcription factors are bound to it; when the multimer
An is bound, the operator is denoted OAn and when Bm is bound, the operator is denoted by OBm.

A simplified model of the system consists of the following chemical reactions. The first two reactions represent the
multimerization reactions of the transcription factors A and B. Multimerization is introduced into the model because
transcription factors must bind to the DNA cooperatively to make a working switch.
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nA
kf

GGGGGGBFGGGGGG

kb
An (S7a)

mB
kf

GGGGGGBFGGGGGG

kb
Bm (S7b)

The next two reactions represent the degradation of the transcription factor monomers as a first order reaction.

A
µA

GGGGGGGA∅ (S8a)

B
µB

GGGGGGGA∅ (S8b)

When no multimers are bound to the operator O, either A or B can be produced. This production is a result
of a large number of biochemical steps, and for this reason, this reaction is assumed to be delayed. This delay is
represented in the equations by setting τ as a superscript in the reaction rate constant. The synthesis reactions for A
and B are then represented as

O
k

(τ)
A

GGGGGGGGAO +A (S9a)

O
k

(τ)
B

GGGGGGGGAO +B. (S9b)

The multimers An or Bm can bind reversibly to the operator O. This gives us

O +An
kon

GGGGGGGBFGGGGGGG

koff
OAn (S10a)

O +Bm
kon

GGGGGGGBFGGGGGGG

koff
OBm. (S10b)

Once the transcription factors of a certain kind bind to the operator, they allow only for the production of monomers
of their own kind. This is represented by

OAn

k
(τ)
A

GGGGGGGGAOAn +A (S11a)

OBm

k
(τ)
B

GGGGGGGGAOBm +B. (S11b)

Together, this gives us a complete description of the lysis/lysogeny switch of phage−λ. We used the parameters
kb = 5 = kf = kon, koff = 1, kA = 1 = kB , µA = 0.3 = µB and n = m = 2. We assume the presence of only 1 operator
O. A detailed analysis of the system, as well as a discussion of the model reduction of the deterministic approximation
to a system of two ordinary differential equations can be found in [2].

The phase space of the lysis/lysogeny switch is mapped onto the RM as follows. We denote by NX the number of
molecules of type X in the system, we compute |A| = NA + 2NA2

and |B| = NB + 2NB2
. If |A| − |B| ≥ 5, the system

is considered to be in state H, and if |A| − |B| ≤ 5, in state L. Otherwise, if |A| − |B| ∈ (−5, 5), the system is said to
be in state I. The system is initialized with 5 molecules of the protein A and 30 molecules of A2 (making |A| = 65)
and |B| = 0. The initial molecule production queue is assumed to be empty. A transient is computed for (τ2 +1)×104

units of time. Any data is gathered after the transient. Mean residence times are computed by averaging over 104

transitions.
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CO-REPRESSIVE TOGGLE SWITCH.

We first describe the deterministic system in order to obtain the critical points. An appropriate choice of parameters
is important, since transitions are very rare between stable points which are widely separated. We present here a
geometrical method to easily find feasible parameters.

The standard form of the co-repressive toggle switch with delayed production is given by the set of delay ordinary
differential equations [3]

ẋ =
β

1 + y(t− τ)2/k
− γx

ẏ =
β

1 + x(t− τ)2/k
− γy.

The production and degradation propensity functions for the delayed Gillespie algorithm are obtained from these
ODEs. Since the fixed points of the system do not change if delay is introduced, we assume that τ = 0, and
parametrize the critical points of the non-delayed system: Setting ẋ = ẏ = 0 and writing a = β/2γ we get

0 =
β

1 + y2/k
− γx =

2ak

k + y2
− x

0 =
β

1 + x2/k
− γy =

2ak

k + x2
− y.

We now eliminate y between the two equations to obtain(
2ak − kx− x3

) (
k + x2 − 2xa

)
(k + x2)

2
+ 4ka2

= 0.

The numerator is a polynomial of degree 5, which implies that there exist at most 5 real critical points. Solving the
quadratic part of the above equations, and substituting back into the original equation leads to two critical points if
a >
√
k: (

a−
√
a2 − k, a+

√
a2 − k

)
(
a+

√
a2 − k, a−

√
a2 − k

)
.

On solving the cubic term explicitly, we observe that we get only one real solution. We arrange for this solution to
be on the line y = x by choosing k = s3/(2a− s) (in which case the third critical point is (s, s)). On eliminating a, k
from the above equations, we see that all critical points must lie on

xy(x+ y − s) = s3.

A stability analysis shows that for any s, the critical point at (s, s) is unstable, while the critical points(
a−
√
a2 − k, a+

√
a2 − k

)
and

(
a+
√
a2 − k, a−

√
a2 − k

)
are stable.

Parameters can now be chosen by first choosing s > 0, then a > s and finally k = s3/(2a− s). We fix the parameter
γ = ln(2) because we assume our units of time to be in terms of the protein half-life. Finally, we can solve for the
parameter β = 2γa.

The parameters used in our study are s = 10, γ = ln(2) and a = 15.8202. The phase space of the co-repressive
toggle is mapped onto the RM as follows: Denote by X and Y the number of molecules of each protein type in the
system. The region between the y− axis and the 45◦ line that passes half-way between the saddle and the stable
point in the region Y > X is mapped onto the state H. The corresponding region between the x-axis and the 45◦

degree line in the X > Y region is mapped into state L. All trajectories are initialized at the saddle (s, s). The initial
molecule production queue is assumed to be empty. A transient is computed for (τ2 + 1) × 104 units of time. Any
data is gathered after the transient. All numerical estimates for mean residence times, failed transition probabilities,
and stationary distributions are computed for 104 transitions from state H to L (and back).
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Transition trajectories. Delay also widens the distribution of paths that lead to failed transitions, as well as
the distribution of those paths that correspond to successful transitions. The changes in the densities of the failed
transition paths appear to be more sensitive to delay. Since the RM is not constructed using the specific features of
any of the models, this effect cannot be explained using our reduction. We present in Figure-S4 the densities of the
paths that correspond to failed, and successful transitions, for the co-repressive toggle switch.

FIG. S4: The top panels show the density corresponding to trajectories that make a failed transition attempt, starting in a
neighborhood of the stable point in the region X > Y . With increasing τ , the support of the density is more spread out.
The bottom panels show the densities for the trajectories corresponding to successful transitions. Again, we observe that the
support of the densities widens, although the effect is not as pronounced as in the case of failed transitions.
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